UHMWPE, Test Protocols and Temperatures: What You Should Know

Posted: May 10, 2014 in Armor Testing, Uncategorized
Tags: , , , , ,

It is no big mystery that I am at best a reluctant advocate of UHMWPE in soft armor. While the material itself *does* have incredible properties, these properties come at a steep price if the end user is not aware of the limitations and weaknesses inherent in the material.

These limitations and weaknesses are exacerbated by (in MY OPINION, ahhh, I promised you would see that word hurled around here!) a tendency to “softball” the armor test protocols. Even the current “best practices” protocols (The FBI and DEA tests for soft armor), have this same inherent kid glove treatment when it comes to UHMWPE containing vests.

“How can this be?” you may ask. Well, let’s review:

UHMWPE (“Ultra High Molecular Weight Poly Ethylene”) is an exceedingly strong material made up of long chains of ethylene molecules. The tensile strength is astounding, exceeding para-aramid (Kevlar/Twaron) and steel easily. It is positively buoyant, waterproof and does not degrade with exposure to UV light (three of the Achillies heels of aramids). However, as has been mentioned before, UHMWPE (regardless of brand- both Spectra and Dyneema are at their root the same basic molecule) will denature when exposed to temperatures exceeding ~168 F.

Think of it as exposing hardened steel to it’s normalization (annealing) temperature. The hardness disappears, and it becomes soft again. Unlike steel, it is impossible to change the UHMWPE back to its “super” state. In its denatured state, the material is identical to the stuff used to make milk jugs.

This denaturation temperature is well-known.

In the real world, temperatures often climb to well above this temperature, in both storage and incidental use (especially hotter regions of the world where .Mil users often find themselves). Why then are the test protocols seemingly designed to AVOID this issue?

Take the current NIJ 06 protocol. It incorporates many new rigors that an armor must pass in order to be certified (a GOOD thing, no doubt), including environmental conditioning. However, the temperature does not exceed the KNOWN denaturation/transition temp of the UHMWPE (highest temp in the conditioning phase is 149 F):


Even the FBI protocol, which excels the NIJ 06 standard in many ways, still only exposes the armor to a MAX temp of 140 F:


Quite frankly, this is a ludicrous state of affairs. Since temperatures can *regularly* reach 200 F in a car trunk or APC on hot days in CONUS or OCONUS, to not expose armor to these realistic circumstances could be perceived as softballing.

Even recent tests done by DSM which supposedly showed that their UHMWPE material did OK in elevated temperatures STILL tiptoed around the transition threshold temp:


In the paper, “temperatures up to 90 C (194 F)” were used. However, these temps were *only* applied to hard/rigid armor, which does not experience the same sensitivity as soft armor, most likely due to an insulative effect of the material in thicker section. The soft armor samples were still only exposed to 70 C (which is 158 F, 10 degrees BELOW the known transition temp). The test should have applied the same max temp to ALL samples, regardless of whether they were hard or soft.

In conclusion, test protocols should be designed to apply REAL WORLD rigors to life saving equipment. The current protocols SEEM TO incorporate temperature threshold requirements that allow the limitations and weaknesses of a specific material (UHMWPE) to pass. Designing tests with less rigorous standards so as to avoid excluding a material does not live up to the purpose of testing in the first place. Providing the absolute best lifesaving gear, regardless of any other considerations, should always be the goal.

  1. Alex says:

    Quick question Doc,

    Do you happen to know if Ops-Core ballistics and Crye helmets are made of UHMWPE? If so it would be a no-go putting them in the trunk, correct?

    Thanks for your knowledge.

    • drmorgear says:

      Alex, that is correct. The Ops-Core is made with Dyneema, the Crye Precision with Spectra Shield. Both rigid UHMWPE, so it would be inadvisable to leave them in the trunk of a vehicle where temperatures can exceed 191 degrees F.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s