From the inception of modern soft armor in the late 60’s to early 70’s, body armor has been tested and rated by the National Institute of Justice, a private organization that took it upon itself to issue standards and testing protocols for body and vehicular armor.
In retrospect, the NIJ rating system was a perfect example of “making it up as you go along.” For example, the use of Roma Plastalina #1 modeling clay as a witness backing material was simply the result of one of the NIJ’s employees grabbing his kid’s modeling clay off his kitchen table.
Over the years, the NIJ Standard has been taken as gospel when it comes to rating and testing armor, but certain high-profile failures over the years were the results of failures of the testing and evaluation of armor.
Chief among those failures were the Zylon fiasco, and the continued use of UHMWPE materials in soft armor.
Zylon, a new “super fabric” of the 90’s, began to see use in soft armor. Touted as the next big leap in body armor technology, it looked good on paper, and performed well- until it didn’t. The the original manufacturer of the fabric, Toyobo of Japan, had never envisioned the fabric being used as soft armor. But with the push for lighter, thinner, and softer vests, several manufacturers immediately jumped on the Zylon bandwagon.
Unfortunately, Zylon had a fatal flaw- because of the manufacturing process, the final step of cleaning the filaments left traces of acid on the fibers. Combined with moisture (such as perspiration), this initiated a chemical reaction that led to degradation and a massive loss of strength in the Zylon fabric. To the extent that it was no longer bullet resistant. This lead to the completely unnecessary and tragic deaths of several peace officers, including Tony Zapatilla, who was killed after receiving shots to his vest that would have been stopped by a non-Zylon armor.
Because the NIJ did not have any kind of environmental conditioning requirements in place, the utter unsuitability of Zylon for use in soft armor was never detected, until it led to deaths and injuries. Two of the earliest crusaders for more accountability in soft armor rating and testing were Kevin McClung, and Gary Roberts, DDS. Kevin also brought to light a key vulnerability of another commonly used material, UHMWPE. UHMWPE is another material that looks good on paper, performs well in its narrow range of suitability, but has several key flaws.
First, because it is essentially the same basic chemical structure as milk jug plastic, it will denature above 180 degrees Farenheit. Back in the late 80’s vests were being constructed with a woven version of UHMWPE, and there were several instances where a hot cup of coffee had been spilled on concealed vests. Hot coffee can easily exceed 180 degrees F, and because of the nature of the woven fabric, it was much more vulnerable to heat-degradation.
This lead to a “retirement” of woven UHMWPE, and a laminated version became standard (the idea being that laminated plies are more resistant to heat transfer, especially from liquids, which is valid). However, the trunk of a vehicle in a hot environment can also exceed the temperature threshold for de-naturation, and so to this day, UHMWPE soft armor is, in my and several other’s opinions, unsafe.
UHMWPE has another flaw, related to the temperature vulnerability: contact shots. Because muzzle blast from most pistols can exceed 900 F, UHMWPE armor can, and has been shown to be susceptible to penetration by contact shots. More importantly, these shots were from rounds that would normally have been easily stopped otherwise.
To their credit, the NIJ listened, and like most good companies, realized they needed to change.
Next year will see a complete restructuring of the standards and ratings.
The Roman numeral levels will be discarded, and instead, a more intuitive rating system will be unveiled. For example, for handgun threats, there will be HG1 and HG2. For rifles, RF1, RF2, and RF3. In our opinion, this will go a long way towards updating and improving armor’s effectiveness.
Some things that will be essential would include:
-More stringent environmental testing, including high temperature conditioning of both hard and soft armor @ 200 F.
-More focus on contact and high-angle-of-incedence impacts
-Specialized testing for female armor
-And perhaps most importantly, the updating of the Rifle threats, to make the M993 and M994 the standard threat projectiles in the higher levels, since the M2 AP is an 80 year old round.
Our hats are off to the NIJ for listening to their customers, and look forward to seeing how the new standards stack up.