Archive for the ‘Opinion’ Category

Over the 40 plus years the NIJ has been certifying body armor, much has changed. Back in the late 60’s, through the 70’s and early 80’s, handgun threats on the streets escalated from .38 SPL RNL and .22 LR out of short barrels to hot 9mm FMJ and .44 Magnum JSP. The level I rating virtually disappeared as a result (though it is still better than nothing, see my shoot tests with Level I panels).

But perhaps the biggest changes have been in the area of rifle threats, specifically AP (Armor Piercing). At the outset, NIJ level IV was rated to stop arguably the most potent threat that could be regularly encountered (and all comparable but lesser threats), the .30-06 M2 AP 163gr. At 2750 FPS, this round was (and still is) formidable. Having a high molybdenum and vanadium tool steel core hardened to around 59-61 Rockwell C hardness, it can punch through 8mm of RHA at 100M. Comparable Soviet and ComBloc rounds do slightly worse.

But fast forward more than three decades, and the threat profile has changed. WC (tungsten carbide) core rounds are no longer a rarity, and their penetration profile is far better than the M2. The American military has recently introduced a second generation WC projectile as a replacement for the first generation M993. Called the ADVAP (Advanced Armor Piercing) round, it is essentially the same design as the M80A1 projectile, with a hardened WC “arrowhead” swaged to a copper alloy base/driver. At $13 -per round- it is designed to cope with advanced emerging armors.

Which means the threats are not unilateral. Advanced Russian and Chinese designs must be assumed to be at least comparable to the M993 (7.62), M995, and AP4 (5.56) rounds. Which is why the NIJ is strongly encouraged to drop the M2 AP as the baseline round for the highest rated rifle plates, and begin using the M993 (as sourcing the newest Russian rounds for testing is virtually impossible at this time).

Testing by Buffman, of BuffmanRange has shown that there are plates that are (barely) capable of stopping the M993 round (and by extension, the M995 and AP4), but it is a crap-shoot. They are neither designed, nor rated for WC threats, which necessitates a completely different design philosophy.

The second problem is that of fragility. The current NIJ IV rating specifies a SINGLE M2 AP round must be stopped, in order to meet the standard. The NIJ III is not much better, specifying 6 rounds of M80 ball in a 6″ circle. In nearly every case, the plate is reduced to rubble, with the entire strike face compromised after a single round. A more reasonable standard is to require 8 rounds in a 6″ circle, for both levels of plate. More difficult? Absolutely. But in keeping up with advancing threats, absolutely necessary.

Here at D-Rmor Gear, we are not satisfied to rest on our laurels, and have been working on these problems tirelessly over many years. As a result, we will have a major announcement by the end of the month. Stay tuned.

From the inception of modern soft armor in the late 60’s to early 70’s, body armor has been tested and rated by the National Institute of Justice, a private organization that took it upon itself to issue standards and testing protocols for body and vehicular armor.

In retrospect, the NIJ rating system was a perfect example of “making it up as you go along.” For example, the use of Roma Plastalina #1 modeling clay as a witness backing material was simply the result of one of the NIJ’s employees grabbing his kid’s modeling clay off his kitchen table.

Over the years, the NIJ Standard has been taken as gospel when it comes to rating and testing armor, but certain high-profile failures over the years were the results of failures of the testing and evaluation of armor.

Chief among those failures were the Zylon fiasco, and the continued use of UHMWPE materials in soft armor.

Zylon, a new “super fabric” of the 90’s, began to see use in soft armor. Touted as the next big leap in body armor technology, it looked good on paper, and performed well- until it didn’t. The the original manufacturer of the fabric, Toyobo of Japan, had never envisioned the fabric being used as soft armor. But with the push for lighter, thinner, and softer vests, several manufacturers immediately jumped on the Zylon bandwagon.

Unfortunately, Zylon had a fatal flaw- because of the manufacturing process, the final step of cleaning the filaments left traces of acid on the fibers. Combined with moisture (such as perspiration), this initiated a chemical reaction that led to degradation and a massive loss of strength in the Zylon fabric. To the extent that it was no longer bullet resistant. This lead to the completely unnecessary and tragic deaths of several peace officers, including Tony Zapatilla, who was killed after receiving shots to his vest that would have been stopped by a non-Zylon armor.

Because the NIJ did not have any kind of environmental conditioning requirements in place, the utter unsuitability of Zylon for use in soft armor was never detected, until it led to deaths and injuries. Two of the earliest crusaders for more accountability in soft armor rating and testing were Kevin McClung, and Gary Roberts, DDS. Kevin also brought to light a key vulnerability of another commonly used material, UHMWPE. UHMWPE is another material that looks good on paper, performs well in its narrow range of suitability, but has several key flaws.

First, because it is essentially the same basic chemical structure as milk jug plastic, it will denature above 180 degrees Farenheit. Back in the late 80’s vests were being constructed with a woven version of UHMWPE, and there were several instances where a hot cup of coffee had been spilled on concealed vests. Hot coffee can easily exceed 180 degrees F, and because of the nature of the woven fabric, it was much more vulnerable to heat-degradation.

This lead to a “retirement” of woven UHMWPE, and a laminated version became standard (the idea being that laminated plies are more resistant to heat transfer, especially from liquids, which is valid). However, the trunk of a vehicle in a hot environment can also exceed the temperature threshold for de-naturation, and so to this day, UHMWPE soft armor is, in my and several other’s opinions, unsafe.

UHMWPE has another flaw, related to the temperature vulnerability: contact shots. Because muzzle blast from most pistols can exceed 900 F, UHMWPE armor can, and has been shown to be susceptible to penetration by contact shots. More importantly, these shots were from rounds that would normally have been easily stopped otherwise.

To their credit, the NIJ listened, and like most good companies, realized they needed to change.

Next year will see a complete restructuring of the standards and ratings.

The Roman numeral levels will be discarded, and instead, a more intuitive rating system will be unveiled. For example, for handgun threats, there will be HG1 and HG2. For rifles, RF1, RF2, and RF3. In our opinion, this will go a long way towards updating and improving armor’s effectiveness.

Some things that will be essential would include:

-More stringent environmental testing, including high temperature conditioning of both hard and soft armor @ 200 F.

-More focus on contact and high-angle-of-incedence impacts

-Specialized testing for female armor

-And perhaps most importantly, the updating of the Rifle threats, to make the M993 and M994 the standard threat projectiles in the higher levels, since the M2 AP is an 80 year old round.

Our hats are off to the NIJ for listening to their customers, and look forward to seeing how the new standards stack up.

After a rather long hiatus, we have updated the ever-popular Recommended Armor/Gear Database. There have been some interesting (and surprising) additions, and sadly some items became unobtainable for various reasons.

But time and gear marches forward! Thanks for your patience. Check out the updated page here:

Recommended Armor and Gear Database

It seems you can’t open a gun mag or blog these days without seeing the .224 Valkyrie mentioned. It’s the new hotness, and everyone wants to shout its praises from the rooftops.

After doing my due diligence, I will admit it has impressive performance compared to similar rounds. But here’s where I am going to dissent from all the cool-kids touting this cartridge: it’s going to end up as nothing more than another 6.8 SPC, a niche round kept alive by a few die-hard supporters.

And the biggest reason for this? One word: magazines.

Initially, before realizing that this round would not fit in any of the excellent industry standard AR magazines (Pmag or Lancer), I was intrigued by the potential of this round- shooting high-BC 90gr bullets out to 1200 meters is nothing to sneeze at.

My first question was, how many will fit in a standard 30 round mag?

None? Pass.

This round was supposedly designed with the AR platform in mind. If so, the designers made a tremendous blunder by not taking into account the dimensions of the standard magazine. The 6.8 SPC, an admittedly superior round, has essentially died out and been relegated to a hard-core contingent of supporters that are willing to put up with spotty to non-existent magazine availability. The same will happen to the .224 Valkyrie.

The .300 Blackout, on the other hand, is an example of a new round that took off and is becoming more and more popular each year, due to the ease of conversion. Same bolts and mags, requiring only a barrel swap. The same could be said, to a lesser extent, of the .458 SOCOM, which only requires a new bolt and barrel. A magazine (especially such universally excellent magazines as the PMAG and Lancer) is the HEART of a weapons system.

And with that said, there are several cartridges that offer significant improvement over the 5.56 without resorting to wacky proprietary parts (bolts and/or magazines, 6.5 Grendel I am looking at you).

These include the 6.5 PCC (Patriot Combat Cartridge) and .25-45 Sharps, both of which use 5.56 brass, bolts, and magazines. Either of these rounds offer QUITE respectable performance improvements over the 5.56, and I am rather surprised that they are not far more popular (being 6.5mm and 6.35mm diameter rounds respectively).

I will concede, the Valkyrie is an excellent, low-recoil bolt gun cartridge, and will likely remain quite popular among PRS shooters.

But it is absolutely not appropriate for a standard AR, simply due to its incompatibility with standard magazines. In short: don’t tout a brand new cartridge as “designed specifically for the AR” and then fail to make it fit the AR! Here’s a hint: if people have to buy special magazines, there’s no reason not to just go with the large frame AR platform. And honestly, if you are using a .224 Valkyrie in a bolt gun, why not just go with a .22-250?

Speaking of which…

If you need to stretch out to 1200 meters, use the right tools (6.5 Creedmoor in a large frame AR would be an excellent choice, and also an example of a well-designed, well thought-out cartridge that will quite possibly become the standard intermediate military round within the next few years).
But in closing, it is good to see this willingness to innovate and experiment, and with any luck, we will see even more innovation in the next few years.

Even though I mostly focus on armor here, sometimes I just have to vent. And that time is now.

Recently (as in, the past several years), I have seen more and more “custom” pistols (mostly Glocks, but up to and including 1911s) with what I can only term “Debris Entry Ports” cut into the slides.

Referred to as “windows” or “lightening cuts,” the only thing I can think of when I see these is “wow, that’s an expensive cutaway demonstrator.” Pistols have dust covers for a reason- it is to prevent crap from entering into the space where the barrel, slide, and recoil system function. Cutting “windows” (I guess so the shooter can make sure their barrel didn’t get up and walk away when they weren’t looking) circumvents the dust cover.

The reasons I have heard for doing this range from “it reduces the reciprocating mass of the slide, making the gun more reliable and lessening recoil” to “it looks cool.” I take exception to the first, and shake my head at the second. Reducing the reciprocating mass of the slide will make the gun LESS reliable in feeding, since less mass means less momentum to strip the next round out of the magazine. And again, less mass will translate in GREATER felt recoil, as mass is what absorbs the impulse (compare a steel 1911 to a polymer pistol, all else being equal, the 1911 will have less felt recoil).

Intentionally circumventing a critical design feature (the dust cover) in a tool designed to protect life and limb, because “chicks dig it,” is…well, not particularly bright. If it is going to be a pampered race gun, only to be used for dropping steel plates or punching paper, go for it. But as a tool of self-preservation, function should always trump form. No firearm for “serious” work should have Debris Entry Ports.

And that’s just about all I have to say on the matter.

At the recent ARMY-2017 Exhibition in Moscow, Russia,(http://www.rusarmyexpo.com/), an armored suit concept was unveiled. Several features stand out as quite unusual:

First, the armored components appear to be semi-load bearing. From visual appearance, the chest and joint armor looks to be made of hexagonal and triangular carbide ceramics. The construction would also indicate field or depot-level reparability, as there is no overlayer. The potential drawback of this system is much higher vulnerability to incidental damage. This concept differs from the current protocol of carrying hard plates in fabric suspension systems.

Second, the construction of the joint armor takes a lot of cues from late medieval designs, and does not appear to hinder movement greatly.

The design appears well thought out, with minimal shot traps and weak points. The overlap of the chest plastron is correct, as most projectiles will impact at a downward arc.

The passive exoskeleton looks to be durable and functional. When power density and heat dissipation issues are solved in the next decade, this system should prove easy to upgrade to a powered exoskeleton.

The armor is puported to withstand “10 rounds of various calibers.” Based on the predicted material/design elements, this system should be capable of providing level IV multi-hit coverage under the rigid components, and level II-IIIA/Frag over the remaining areas.

It is predicted to be fielded within 15 to 20 years.

A recent hubbub surrounding a manufacturer of steel plates for body armor highlights the importance of choosing a good manufacturer.

It has come to light that this company used the excellent Armox Advance (manufactured by SSAB in Sweden, a reputable and highly respected company) to make their newest plates, which on the surface had impressive specs: .196″ thick (before coating) and under 5 lb. for a 10X12 plate, in a complexly curved plate (almost unheard of). They claimed that the plates would stop M193 at 3100+ FPS, which based on the capabilities of the steel, they should have. Seemed too good to be true.

And it was.

Several testers immediately reported that the plates were failing, and failing rather dramatically at well below the stated velocity threshold.

Some sleuthing (which uncovered a patent application by this company), showed that in order to press the plates into the comfortable multi-curve profile, the company had…wait for it…ANNEALED the blanks.

To my non-metallurgist readers, that means the plates were heated up to what is known as critical temperature (around 1600 F for this particular steel), which removes all hardness. The plates were then apparently re-heated and re-hardened (NOT by SSAB, but by the company in question) after forming. Which is why the failures should surprise no-one.

There are no free lunches.

Steel for body armor is certified by the manufacturer, right up to the point it is meddled with.

Stripping the factory heat treat to make it easier to bend can turn a previously excellent steel into just another piece of random plate. 80% of a given high performance steel’s properties are in the heat treat, the remaining 20% are the chemistry and how the piece is shaped/engineered. Thinking that they could equal the heat-treat of SSAB using standard commercial methods was pure irresponsible hubris, and could have cost lives. There is a reason curved Armox Advance plates are rare, and usually single curve.

Unfortunately, it is incidents like this that give steel rifle plates an undeservedly bad reputation, and it is up to reviewers and end-users to educate themselves. Purchase steel plates from well-known, vetted companies such as Patriot Plate, Spartan, AR500, and others.

And while it is laudable to want to innovate and improve, manufacturers of body armor need to have a grasp of some basic, basic fundamentals of the materials they are working on, and rigorously test their product in-house (the above issue would have been avoided had the company in question actually tested the finished plates before letting them out the door).

It is my hope that this company will do the right thing and refund the money of their customers that purchased these plates, and replace them with plates that have been tested and pass QC.

As always, do your homework, and I will do my part to get this information to the end users.

Over the past six months, there has been a great deal of both excitement, and lately concern, regarding the Armour Wear AR680 plate. Touted as a “level III+” plate, it is claimed to stop the extremely dangerous M193 high-velocity threat.

In the past few months, extremely un-scientific tests on Youtube seemed to “prove” that it was prone to failure when shot by M193 @ 3200 fps.

Unfortunately, Armour Wear did not originally release a very scientific test video themselves.

At this juncture, I have not seen proof either way, either validating or disproving the efficacy of the AR680 plates. Simply because both the proponents (the company in particular) and the detractors (youtube channel) did not take the small amount of extra time and effort to arrange a proper test.

A proper test is *NOT*:

Setting up a bunch of plates on a berm at a 45 degree angle and blazing away willy-nilly.
Setting up a huge sheet of the steel (again, at a range), and (again), blazing away.
Clamping the plate to a rigid fixture, with no backing, and shooting it.

To properly test body armor, hard or soft, requires the use of a backing. The NIJ specifies no.1 Roma Plastalina modeling clay. Any semi-flexible backing will do, as long as it is close in consistency to a human body. The reason for this is two-fold: first, to be able to determine how much energy (backface deformation) is being imparted to the wearer. Secondly (and for the purpose of this post, more importantly), to mimic the physics of the armor being worn.

A plate that is clamped to a rigid fixture will behave differently than one that is resting on a flexible surface. A rigid plate will have no give, and the round will transfer more energy to the plate. With a proper backing, the initial impact will be reduced ever so slightly.

For some armor (soft armor in particular) this will make the difference between complete penetration, and performing as designed (setting a soft armor vest against a plywood or other hard surface enables it to be penetrated with ease). This will also have relevance with hard armor, especially if it is near its failure threshold.

In the same way, propping a plate at an angle will allow it to stop far more than at 0 degrees of obliquity. MBT armor is sloped for this same reason.

As a result of the above, I will be performing a scientific (or at least, much more so than has been performed so far) comparitive shoot test on the Armour Wear AR680 and Maingun Patriot 2 Advance plates. I had contacted Spartan Armor in an attempt to source one of their level III+ plates to include in the test, but have not heard back from them.

It is my hope that this test will settle any arguments once and for all regarding M193 high velocity protection. Stay tuned!

Anyone who has read my blog for any length of time is probably aware of my opinion of laminates (not great). UHMWPE laminates are not recommended for use in soft armor at all (due to heat degradation and contact-shot issues), while Aramid based laminates have problems with delamination, heat/sweat retention, and similar difficulties with muzzle-contact shots.

Despite several generations of laminates being produced since the original iteration was released back in the 90’s, the problems remained- limited lifespan of the armor package due to creeping edge delamination, feeling like you were swathed in plastic shrink-wrap (which, essentially you were), and poor performance against shots that allowed hot muzzle blast to melt the plastic film holding the unidirectional layers together.

These glaring deficiencies have prompted the major developers of aramid-based ballistic materials, Teijin and DuPont, to create a new generation of materials that attempt to combine the admitted advantages of laminates (extremely thin ballistic packages, greater flexibility, good edge and high angle hit resistance) with the known advantages of woven aramids (breathability, no delamination worries, greater ballistic package longevity).

These efforts led to the debut of DuPont’s Kevlar XP in 2009, and Teijin’s Twaron LFT SB1 in 2012 and LFT SB1+ in 2013. These materials utilize a hybrid of both woven and laminate technology, and so the term “wovenates” is best used to describe them. Rather than using the traditional, and flawed method of encapsulating with a plastic film, both companies chose to use a very flexible resin to saturate the fibers. This obviates delamination, and also allows for a much thinner overall ballistic package. The two different designs (XP and SB1) rely upon tried and true aramid fibers arranged in unique fashion, similar to standard woven Kevlar fabric. This combination of attributes makes for a highly flexible, yet durable material.

Additionally, these materials have been tested and shown to provide significant reduction in both weight, and backface deformation (particularly SB1+). Sweat management is much better than previous laminates, due to the construction of these materials.

Examination of used ballistic packages made with these materials do not exhibit delamination or degradation even after several years of heavy use, and testing shows that they still provide the same level of protection that they started with.

At this time, I can endorse the use of these materials (Kevlar XP and Twaron SB1/SB1+) as viable options for personal protective gear, comparable to woven Aramids. I have not evaluated their effectiveness against contact shots, but will do so in the near future.

Stay tuned for more information!

Have finally had a moment to update the Recommended Armor Database. Alot has changed, and some items have either been superseded (AR680/Ultra-Hard Steel Plates are now best practices in the steel category, Mil-HHS is minimum acceptable, and AR500 should no longer be used for anything except training targets), or even discontinued (Midwest SIGMA III+).

Due to US Armor’s ludicrous “no civilians” policy, I cannot and will not recommend their products until such time as they change, and so I do not have any concealable armor listed currently (The US Armor Enforcer Classic IIIA being the only soft armor that meets my standards).

As always, please contact me if you feel something should be added to the list.